\qquad
Consider the changes ($\mathrm{pH},\left[\mathrm{H}^{+}\right],\left[\mathrm{OH}^{-}\right]$) when titrating 50.0 ml of 0.20 M solution of lactic acid, $\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$ with 0.40 M potassium hydroxide. Then construct a titration curve on the graph on page 2 . The K_{a} of lactic acid $=1.4 \times 10^{-4}$

1. Calculate the pH of 50.0 ml of a 0.20 M solution of lactic acid, $\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$.
2. What volume of 0.40 M KOH would be needed to neutralize this 50.0 ml of a 0.20 M solution of lactic acid, $\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$? (This should be the first step you would take to solve any titration problem, even if you weren't asked to do it.)
3. Calculate the pH of 50.0 ml of a 0.20 M solution of lactic acid, $\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$ after it has been titrated with 10.0 ml of 0.40 M KOH ?
4. Calculate the pH of 50.0 ml of a 0.20 M solution of lactic acid, $\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$ after it has been titrated with a total of 12.5 ml of 0.40 M KOH ?
5. Calculate the pH of 50.0 ml of a 0.20 M solution of lactic acid, $\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$ after it has been titrated with a total of 20.0 ml of 0.40 M KOH ?
6. Calculate the pH of 50.0 ml of a 0.20 M solution of lactic acid, $\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$ after it has been titrated with a total of 25.0 ml of 0.40 M KOH ?
7. Calculate the pH of 50.0 ml of a 0.20 M solution of lactic acid, $\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$ after it has been titrated with a total of 30.0 ml of 0.40 M KOH ?
\qquad Per \qquad
Make a sketch of the titration curve using the volumes and pH values calculated for the titration
of 50 ml of 0.20 M lactic acid with 0.40 M KOH . Placing a point on the graph for problems $3-7$ from the previous page and \#'s $8 \& 9$ below.

As you construct this graph, you will get a much more accurate sense of the curve if you make two more calculations and place two more points on the graph.
8. Calculate the pH of 50.0 ml of a 0.20 M solution of lactic acid, $\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$ after it has been titrated with a total of 24.0 ml of 0.40 M KOH ?
9. Calculate the pH of 50.0 ml of a 0.20 M solution of lactic acid, $\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$ after it has been titrated with a total of 26.0 ml of 0.40 M KOH ?

Be sure that if you need help, you refer to NS G. 1 - Acid-Base Titrations.

First you need to recognize that this is a WA being titrated with a SB.

1. $\quad K_{a}=\frac{\left[H^{+}\right]\left[A^{-}\right]}{[H A]}$ This is an " x " problem. $\quad 1.4 \times 10^{-4}=\frac{x^{2}}{[0.20]} \quad \mathrm{x}=\left[\mathrm{H}^{+}\right]=5.3 \times 10^{-3} \mathrm{M}$ so $\mathbf{p H}=\mathbf{2 . 2 8}$
2. It is ALWAYS important to calculate the volume required to reach the equivalence point; moles of acid $=$ moles of base, $\mathrm{M}_{\mathrm{a}} \mathrm{V}_{\mathrm{a}}=\mathrm{M}_{\mathrm{b}} \mathrm{V}_{\mathrm{b}}$

- so $0.20 \mathrm{M} \times 50 \mathrm{ml}=0.40 \mathrm{M} \times \mathrm{V}_{\mathrm{b}}$
- thus the volume of strong base needed to reach the equivalence point is $25.0 \mathbf{~ m l} \mathbf{~ o f ~} \mathbf{K O H}$

3. At this point you are only partway through the titration, but not yet to the halfway point.

- Calculate the millimoles of lactic acid $(0.2 \mathrm{M} \times 50 \mathrm{ml})$ and millimoles of incoming strong base $(0.4 \mathrm{M} \times 10 \mathrm{ml})$
- Subtract the incoming strong base from the weak acid, to find out the remaining un-neutralized weak acid (6 mmole) and there so very little A^{-}in solution to start but the incoming strong base will drive the equilibrium to the right and produce an amount of mmoles of Aequivalent to the incoming strong base (4 mmole) so you will add that to the conjugate weak base (which was originally ~ 0)

$$
K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[A^{-} \begin{array}{c}
\text {-incomingsA } \\
\text { tincomings }
\end{array}\right]}{\left[H A_{\substack{\text {-incomingss } \\
\text {-inomings }}}\right]} \quad K_{a}=\frac{\left[H^{+}\right]\left(A^{-}+\text {moleOH }^{-}\right)}{\left(H A-\text { moleOH }^{-}\right)} \quad K_{a}=\frac{\left[H^{+}\right]\left(\sim 0+4 \mathrm{moleOH}^{-}\right)}{\left(\sim 10 \mathrm{mmol}-4 \mathrm{moleOH}^{-}\right)} \quad 1.4 \times 10^{-4}=\frac{\left[\mathrm{H}^{+}\right] 4 \mathrm{mmol}}{6 \mathrm{mmol}}
$$

- Solve and $\left[\mathrm{H}^{+}\right]=2.1 \times 10^{-4} \mathrm{M}$ so $\mathbf{p H}=\mathbf{3 . 6 8}$

4. Yippee! This is the halfway point of the titration, because half of the weak acid is reacted ($10 \mathrm{mmol}-5 \mathrm{mmol}$), and half of the conjugate weak base forms $(5 \mathrm{mmol}) K_{a}=\frac{\left[H^{+}\right]\left(\sim 0+5 \mathrm{moleOH}^{-}\right)}{\left(\sim 10{\left.\mathrm{mmol}-5 \mathrm{moleOH}^{-}\right)}^{(\sim 2}\right)}$ and thus [HA]=[A-] resulting in $K_{a}=\left[H^{+}\right]\left(\frac{A^{-}=}{H A=}\right)$

- so always at the halfway point, the $K_{a}=\left[\mathrm{H}^{+}\right]=1.4 \times 10^{-4}$ and $\mathbf{p H}=\mathbf{3 . 8 5}$

5. At this point you are again only partway through the titration.

- Calculate the millimoles of lactic acid ($0.2 \mathrm{M} \times 50 \mathrm{ml}$) and millimoles of incoming strong base $(0.4 \mathrm{M} \times 20 \mathrm{ml})$
- Subtract the incoming strong base from the weak acid, to find out the remaining un-neutralized acid (2 mmole) and there is so very little A^{-}in solution to start, ~ 0, but the incoming base will drive the equilibrium to the right and produce an amount of mmoles of A^{-} equivalent to the incoming strong base (8 mmole) so you will add that to the conjugate weak base (which was originally ~ 0)
- Solve $\left[\mathrm{H}^{+}\right]=3.5 \times 10^{-5} \mathrm{M}$ so $\mathbf{p H}=\mathbf{4 . 4 6}$

6. At this point you are at the equivalence point and all of the WA has been neutralized - the equilibrium has been driven all the way to the right, but the pH is NOT 7 because there will be conjugate $\mathrm{WB},\left(\mathrm{A}^{-}\right)$in the solution which does not just "sit there," but hydrolyzes with water causing the pH to be above 7. So here you must switch gears.

- You have already calculated the millimoles of WA, and that will be the amount of conjugate $\mathrm{WB}, \mathrm{A}^{-}$in solution because the incoming strong base has driven the neutralization "all the way" and all the WA has been converted to WB.
- thus $\left[\mathrm{A}^{-}\right]=10 \mathrm{mmole}$ divided by total volume $(75 \mathrm{ml})=0.133 \mathrm{M}$
- You can then use the $\left[\mathrm{A}^{-}\right]$in a simple " x "" WB calculation to determine the $\mathrm{x}=\left[\mathrm{OH}^{-}\right]$
- $K_{b}=\frac{\left[O H^{-}\right][H A]}{\left[A^{-}\right]}$(Of course you need to calculate the K_{b} from the K_{a} remember: $K_{a} \times K_{b}=1 \times 10^{-14}$
- thus $K_{b}=7.1 \times 10^{-11}=\frac{x^{2}}{[0.133]}$ and $\mathrm{x}=\left[\mathrm{OH}^{-}\right]=3.1 \times 10^{-6} \mathrm{M}$
- After solving for $\mathrm{x}=\left[\mathrm{OH}^{-}\right]$you can $-\log \left[\mathrm{OH}^{-}\right]$determine the $\mathrm{pOH}=5.51$ the " $14-\mathrm{it}$ " for $\mathbf{p H}=\mathbf{8 . 4 9}$

7. At this point in the titration the amount of strong base added exceeds the amount of weak acid.

- You know that the equivalence point occurs at 25 ml of KOH added, thus 30 ml of KOH is 5 ml beyond the equivalence point resulting in an extra 2 mmole of strong base (since $0.40 \mathrm{M} \times 5 \mathrm{ml}$ extra base $=2 \mathrm{mmol}$ extra SB) (OR 10 mm WA with $12 \mathrm{mmol} \mathrm{SB}=2 \mathrm{~mm}$ extra SB)
- Divide this extra 2 mmole of strong base by total volume (80 ml) to get 0.025 M of strong base in excess. (The rest of the incoming strong base was neutralized by H^{+}put out by the dissociating WA.) This SB which contributes far more OH^{-}than the conjugate weak base does, so you need not concern yourself with any minute "extra" OH^{-}contributed by the WB.
- Thus $-\log [0.025]=\mathrm{pOH}=1.60$, thus " $14-\mathrm{it}$ " to get $\mathbf{p H}=\mathbf{1 2 . 4 0}$

Titration curve for WA + SB

8. At this point, just like the calculation that you made in $\# 5$, you are again only partway through the titration.

- Calculate the millimoles of lactic acid ($0.2 \mathrm{M} \times 50 \mathrm{ml}$) and millimoles of incoming strong base $(0.4 \mathrm{M} \times 24 \mathrm{ml})$
- Subtract the incoming strong base from the weak acid, to find out the remaining un-neutralized weak acid (0.4 mmole). Realize that there so very little A^{-}in solution to start but the incoming strong base will drive the equilibrium to the right and produce an amount of mmoles of A- equivalent to the incoming SB (9.6 mmole) so you will add that to the conjugate WB (which was originally ~ 0)
- Solve $\left[\mathrm{H}^{+}\right]=5.8 \times 10^{-6} \mathrm{M}$ so $\mathbf{p H}=\mathbf{5 . 2 3}$

9. At this point in the titration the amount of SB added exceeds the amount of WA, just like in \#7.

- You know that the equivalence point occurs at 25 ml of KOH added, thus 26 ml of KOH is 1 ml beyond the equivalence point. From previous calculations, we know that the mmole of WA is $(0.2 \mathrm{M} \times 50 \mathrm{ml}) 10 \mathrm{mmoles}$, and the mmol of incoming SB is more, 10.4 mmoles ($0.40 \mathrm{M} \times 26 \mathrm{ml} \mathrm{SB}$)
- Subtract to get 0.4 mmole of excess SB , then divide by total volume (76 ml) to get 0.0055 M of strong base in excess. (The rest of the incoming SB was neutralized by H^{+}put out by the dissociating WA.) This SB which contributes far more OH^{-}than the conjugate weak base contributes, so you need not concern yourself with any minute "extra" OH^{-}contributed by the WB.
- Thus $-\log (0.00525)=\mathrm{pOH}=2.28$, thus " 14 -it" to get $\mathbf{p H}=\mathbf{1 1 . 7 2}$

