P G4 (pg 1 of 2)	Writing & Naming Ionic Fo (Using Polyatomic Ions)	ormulas	Name	Per
Write the formula or the name (as appropriate) for the following compounds.				
1. magnesium nitrate		12. magnesium	n acetate	
2. lithium cyanide		13. sodium hyd	droxide	
3. aluminum sulfate		14. gallium sul	lfite	
4. mercury(II) phospha	ate	15. copper(II)	phosphite	
5. iron(III) nitride		16. scandium(I	III) phosphide	
6. Ba(OH) ₂		17. Ca(ClO) ₂		
7. Ga ₂ (CrO ₄) ₃		18. Ni ₂ (Cr ₂ O ₇)	13	
8. K ₂ SO ₃		19. Au ₂ C ₂ O ₄		
9. Na ₂ SO ₄		20. Na ₂ HPO ₄		
10. AgNO ₃		21. AgCN		
11. V ₃ (PO ₄) ₅		22. Mo ₃ (PO ₃) ₅	i -	

Writing & Naming Ionic Formulas

(Using Polyatomic Ions)

- 1. Mg^{2+} (NO₃⁻) criss-cross to get $Mg(NO_3)_2$
- 2. Li+ CN- criss-cross to get LiCN
- 3. Al^{3+} (SO₄²⁻) criss-cross to get $Al_2(SO_4)_3$
- 4. Hg²⁺ (PO₄³⁻) criss-cross to get Hg₃(PO₄)₂
- 5. Fe^{3+} N³⁻ criss-cross to get Fe_3N_3 then reduce to get FeN
- 6. Ba²⁺ (OH)⁻, resulting in barium hydroxide
- 7. Ga^{3+} (CrO₄²⁻) resulting in gallium chromate
- 8. K^+ (SO₃^{2–}) resulting in potassium sulfite
- 9. Na⁺ (SO₄²⁻) resulting in sodium sulfate
- 10. Ag⁺ (NO₃⁻) resulting in silver nitrate (silver is always +1, no need for a Roman #
- Since the phosphate carries a 3- charge, 5 of them × 3- equals 15-, and the vanadium ions total charge must be opposite in sign, but equal in magnitude. Thus 3 vanadium ions × "what charge" = 15+? Thus the vanadium must be 5+, resulting in vanadium(V) phosphate
- 12. Mg²⁺ (C₂H₃O_{2⁻) criss-cross to get Mg(C₂H₃O₂)₂}
- 13. Na⁺ OH⁻ criss-cross to get NaOH
- 14. Ga^{3+} (SO₃²⁻) criss-cross to get $Ga_2(SO_3)_3$
- 15. Cu^{2+} (PO₃³⁻) criss-cross to get $Cu_3(PO_3)_2$
- 16. Sc^{3+} P³⁻ criss-cross to get Sc_3P_3 then reduce to get ScP
- 17. Ca²⁺ ClO⁻ resulting in calcium hypochlorite
- 18. Since the dichromate carries a 2- charge, 3 of them × 2- equals 6-, and the nickel ions total charge must be opposite in sign, but equal in magnitude. Thus 2 nickel ions × "what charge" = 6+? Thus the nickel must be 3+ resulting in nickel(III) dichromate
- 19. Since the oxalate carries a 2- charge, one of them equals 2-, and the gold ions total charge must be opposite in sign, but equal in magnitude. Thus 2 gold ions \times "what charge" = 2+? Thus the gold must be 1+ resulting in gold(I) oxalate (Note that this is an exception to the reduce rule because if the formula was reduced, it would no longer symbolize oxalate which must be C₂O₄)
- 20. Na⁺ HPO₄²⁻ resulting in sodium monohydrogen phosphate
- 21. Ag⁺ CN⁻ resulting in silver(I) cyanide
- 22. Since the phosphite carries a 3- charge, 5 of them × 3- equals 15-, and the molybdenum ions total charge must be opposite in sign, but equal in magnitude. Thus 3 molybdenum ions × "what charge" = 15+? Thus the molybdenum must be 5+, resulting in molybdenum(V) phosphite